If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+5x+15=(4x+3)(5x+3)
We move all terms to the left:
3x^2+5x+15-((4x+3)(5x+3))=0
We multiply parentheses ..
3x^2-((+20x^2+12x+15x+9))+5x+15=0
We calculate terms in parentheses: -((+20x^2+12x+15x+9)), so:We add all the numbers together, and all the variables
(+20x^2+12x+15x+9)
We get rid of parentheses
20x^2+12x+15x+9
We add all the numbers together, and all the variables
20x^2+27x+9
Back to the equation:
-(20x^2+27x+9)
3x^2+5x-(20x^2+27x+9)+15=0
We get rid of parentheses
3x^2-20x^2+5x-27x-9+15=0
We add all the numbers together, and all the variables
-17x^2-22x+6=0
a = -17; b = -22; c = +6;
Δ = b2-4ac
Δ = -222-4·(-17)·6
Δ = 892
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{892}=\sqrt{4*223}=\sqrt{4}*\sqrt{223}=2\sqrt{223}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{223}}{2*-17}=\frac{22-2\sqrt{223}}{-34} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{223}}{2*-17}=\frac{22+2\sqrt{223}}{-34} $
| 13⋅d=6 | | 13t+27=2t+49 | | 42=7x−14 | | x+5/6+2=10 | | d−6=8 | | 18.62+z/2.01=1.2 | | (1/2x)-6=10 | | 5m2=14-9m | | f=10+19. | | 5p-11=64 | | 4(3y-5)=-2(46+3y) | | 1x+17x=-54 | | (x+8)x4=21/4 | | x+125=23−75x | | -6(9x+5)-3x+4x=104+x | | (x+8)x4=21 | | 8(x+3)=-96 | | 2/7x=6/11 | | -2x+3-x=3x-15 | | X2+17x-30=0 | | 10x^2-92x-70=0 | | 0.9=0.15(y+9) | | 9z−7z=16 | | -0.84(m+4)=-4.2 | | -7.2=1.2y-3.6 | | 5x2x=21 | | t-5=22 | | 10w+19+3w=6(9+w)−14 | | 1/2x+5-(5/2-6)=3/2 | | 40-6a=2-8(a-3) | | 2x-4(1-8x)=-106 | | 7s2+56s+49=0 |